"""Prime Number Sieve
Implements a series of functions that determine if a given number is prime.
Attributes:
LOW_PRIMES (list): List containing prime numbers <= 100 (aka 'low primes').
Note:
* https://www.nostarch.com/crackingcodes/ (BSD Licensed)
"""
import math, random
[docs]def isPrimeTrialDiv(num: int) -> bool:
"""Is prime trial division
Uses the `trial division`_ algorithm for testing if a given number is prime.
Args:
num: Integer to determine if prime.
Returns:
True if num is a prime number, otherwise False.
.. _trial division:
https://en.wikipedia.org/wiki/Trial_division
"""
# All numbers less than 2 are not prime:
if num < 2:
return False
# See if num is divisible by any number up to the square root of num:
for i in range(2, int(math.sqrt(num)) + 1):
if num % i == 0:
return False
return True
[docs]def primeSieve(sieveSize: int) -> list:
"""Prime sieve
Calculates prime numbers using the `Sieve of Eratosthenes`_ algorithm.
Args:
sieveSize: Largest number to check if prime starting from zero.
Returns:
List containing prime numbers from 0 to given number.
.. _Sieve of Eratosthenes:
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
"""
sieve = [True] * sieveSize
sieve[0] = False # Zero and one are not prime numbers.
sieve[1] = False
# Create the sieve:
for i in range(2, int(math.sqrt(sieveSize)) + 1):
pointer = i * 2
while pointer < sieveSize:
sieve[pointer] = False
pointer += i
# Compile the list of primes:
primes = []
for i in range(sieveSize):
if sieve[i] is True:
primes.append(i)
return primes
[docs]def rabinMiller(num: int) -> bool:
"""Rabin-Miller primality test
Uses the `Rabin-Miller`_ primality test to check if a given number is prime.
Args:
num: Number to check if prime.
Returns:
True if num is prime, False otherwise.
Note:
* The Rabin-Miller primality test relies on unproven assumptions, therefore it can return false positives when
given a pseudoprime.
.. _Rabin-Miller:
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
"""
if num % 2 == 0 or num < 2:
return False # Rabin-Miller doesn't work on even integers.
if num == 3:
return True
s = num - 1
t = 0
while s % 2 == 0:
# Keep halving s until it is odd (and use t
# to count how many times we halve s):
s = s // 2
t += 1
for trials in range(5): # Try to falsify num's primality 5 times.
a = random.randrange(2, num - 1)
v = pow(a, s, num)
if v != 1: # This test does not apply if v is 1.
i = 0
while v != (num - 1):
if i == t - 1:
return False
else:
i = i + 1
v = (v ** 2) % num
return True
# Most of the time we can quickly determine if num is not prime
# by dividing by the first few dozen prime numbers. This is quicker
# than rabinMiller(), but does not detect all composites.
LOW_PRIMES = primeSieve(100)
[docs]def isPrime(num: int) -> bool:
"""Is prime
This function checks divisibility by LOW_PRIMES before calling
:func:`~books.CrackingCodesWithPython.Chapter22.primeNum.rabinMiller`.
Args:
num: Integer to check if prime.
Returns:
True if num is prime, False otherwise.
Note:
* If a number is divisible by a low prime number, it is not prime.
"""
if num < 2:
return False # 0, 1, and negative numbers are not prime.
if num in LOW_PRIMES:
return True # Low prime numbers are still prime numbers
# See if any of the low prime numbers can divide num:
for prime in LOW_PRIMES:
if num % prime == 0:
return False
# If all else fails, call rabinMiller() to determine if num is a prime:
return rabinMiller(num)
[docs]def generateLargePrime(keysize: int=1024) -> int:
"""Generate large prime number
Generates random numbers of given bit size until one is prime.
Args:
keysize: Number of bits prime number should be.
Returns:
Random prime number that is keysize bits in size.
Note:
* keysize defaults to 1024 bits.
"""
while True:
num = random.randrange(2**(keysize-1), 2**keysize)
if isPrime(num):
return num